active learning - a few examples

Joanna Boyette George Mason University Department of Mathematical Sciences jboyett2@gmu.edu

My experience

- Online
- Hybrid, mastery based course
- Flipped large lecture
- Active Learning in a med to large class
- Problem based small course with reflective journaling

Toolset:

- Flipped
- Inquiry based
- Problem based
- Active learning
 - Technology

considerations

- class size/demographic
- content/learning outcomes
- student strengths

Courses

- Active Learning in a med to large class
- Problem based small course with reflective journaling

Active Learning Math for Elementary Ed

- Elementary education majors
- Predominantly women, almost like a cohort
- Lots of resistance to mathematics

 Lots of really great problems with ability to get your hands on things

Active Learning Math for Elementary Ed

- Began in ALT room 72 students
- Used publisher created activities and our own
- Structure, structure
- Assigned groups that change 3x during semester
- Early accountability and formative feedback
- Lots of help

To Class Wednesday, please

Assessments 🗸

- 1. Read Section 1.3 and take notes.
- 2. Bring Blue base blocks.
- 3. Bring three copies of these Balance Scales

Homework (due Monday):

Unit 1 Daily List

Week 1: Jan 20

For Wednesday:

Class Objectives:

Build Content 🗸

Ċ,

1. Section 1.3: 5, 7 (with balance scale pictures), 9, 11d (with balance scale pictures), 17b (with balance scale pics), 20, 22, 23

Course Content > Unit 1 Daily List **Table of Contents** 1 0 3 0.12131 MATH- A 01 (Spring ™ Week 2 **Daily List** Week 2 Snow Day active **Daily List** Statistics Vocab Solution → Week 3: us/Office Hours incements · ■ Week 4 ™ Week 5 ssion Board - Meek 6 ades e Content Solutions Z ons 🗷

SE GEMENT

Active Learning - Mid-size (20-36) Math for Elementary Ed

- First semester setup
 - Structure
 - Assigned groups
 - Clear expectations
 - Early accountability and feedback
- Second semester setup
 - More flexibility students know the routine
 - Assigned groups changed once during the semester
 - Clear expectations known by students
 - Less accountability, less feedback

Active Learning - Mid-size (20-36) Math for Elementary Ed

- First semester content
 - Highly non-linear problems early
 - Time to acclimate to exploration
 - Introduce structured work and guided assignments later
- Second semester content
 - Larger projects, time to breathe.
 - Explorations

Geometry Project

Build a portfolio/booklet/scrapbook/project of your choice which demonstrates all important geometry vocabulary and formulas.

Geometry Project

- Creativity (we're trying to move away from book-like pictures).
 Think of something a kid would enjoy looking at or enjoy creating.
- Your project should bring meaning and life to the detailed vocabulary. You, I and your classmates should find your approach interesting and engaging.
- Your work should have a consistency to it, and at the end of the semester be a finished product.
- The project should contain well-labeled diagrams with precise vocabulary that will be outlined in class. You may use written definitions as needed for clarity.

· Perpendicylar lines snown in

SOSCELES

· A trapezoid is a 4-sided flat shape with straight sides that has a pair of sides, opposite of eachother that are parallel

- · An Isoceles trapezoid is defined when the sides that aren't parallel are equal in length and both angles coming from a parallel side are equal.
- . The diagnoss here are congruent
- * As Shown above, the societ goal is an Isosceles Trapezaid because
- two sides are parallel, and the other sides are largivent (equal) and arease the

Sides C and D are not parallel, but are opposite of eachother and congruent (equal) in length

Problem Based Learning - small class Quantitative Reasoning

- Non-majors
- Required course
- Really don't like math

Student strengths – hardworking, love projects

Problem Based Learning - small class Quantitative Reasoning

Setup

- Super flexible
- No assigned groups, used groups and individual assignments on the fly

Problem Based Learning - small class Quantitative Reasoning

- Mixture of lecture, projects, presentations and reflection
 - Mini-lecture:
 informal introduction. I have a set list of important topics to cover
 - In-class work
 open ended problems, or larger explorations
 - Homework:
 writeup what we did in class and reflect on the important points.
 - 5 Mini-exams: mastery based

Problem Based Learning - small class Sample assignments

Sets

Let
$$U = \{t,u,v,w,x,y,z\}$$
, $D = \{w,y\}$, $A = \{w,v\}$, $B = \{v,t,x\}$, $C = \{z,t,v,x,w\}$.

Is
$$B \subset C$$
?

Problem Based Learning - small class Sample assignments

MAKE IT COUNT.

Curate - Structure - Connect